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Wind-driven ocean circulation--Part 1. Linear theory and 

perturbation analysis 

GEORGE VERONIS 
Massachusetts Institute of Technology, Cambridge, Mass. 

(Received 15 September 1965) 

Abstract - -The  linear model of wind-driven circulation with bottom friction is solved by boundary- 
layer methods and a perturbation solution of the non-linear model is also presented. The results are 
discussed in detail to set the stage for the discussion of the results of the numerical integrations of the 
non-linear system of Part 2. 

1. INTRODUCTION 

THE PROBLEM of determining the response of the ocean to the action of a wind-stress 
at the surface has been investigated by many scientists in the past seventy years. 
Nearly all of  the models for large scale wind-driven ocean circulation involve the 
simplification to a system which, for all practical purposes, is barotropic or homo- 
geneous. The hope in such an investigation is the the principal features of wind- 
driven ocean circulation can be reproduced or at least approximated. 

This " equivalent" barotropic model is constriacted so as to incorporate in some 
sense the facts that the ocean is stratified and that it lies on a rotating sphere. It 
suffices for our purposes to note that the stratification causes the vertical component 
of the Coriolis parameter to be much more important than the horizontal component 
so that the latter is neglected. Then the transformation of the equations to the 
/3-plane may be made in a straightforward manner and the mathematical problem 
for the vertically averaged velocity is expressible as the vorticity equation for a 
homogeneous, two-dimensional ocean confined between given boundaries where the 
stream-function vanishes. 

Even though the model is a very crude description of wind-driven ocean circulation 
(it leaves out the effects of topographic and baroclinic processes), it is a worthwhile 
model to pursue--at  least up to a point. STOMMEL'S (1948) elegantly simple demon- 
stration that westward intensification can be directly traced to the /3-effect in the 
linear model bears witness to the usefulness of  this simple model. How much more 
the complete model contains has not been made clear principally because of the 
difficulties presented by the non-linearities of the equations. 

And yet the model itself is sufficiently simple so that we should be able to extract 
essentially all of the information contained in it. For example, consider the response 
of a two-dimensional ocean in a basin of simple geometric shape on a E-plane and 
subject to a steady wind-stress. The equations for this system contain only two 
parameters, one a measure of friction, the other a measure of non-linearity. With 
modern electronic computers we have the means for solving this system for different 
relative values of  the parameters. We can learn not only how the flow in such a 
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model reflects the behaviour of the real ocean but, more important still, we can fin 
out what features the model fails to predict. We can then get on to the more irr 
portant task of constructing a more complete model, incorporating those feature 
of the present model which are found to be realistic. 

This paper contains a systematic investigation of the barotropic model of wine 
driven ocean circulation. Part 1 includes boundary-layer analyses of the linea 
problem with bottom friction and of the first perturbation correction by non-linea 
terms. Emphasis is placed on those concepts and results of the linear and quasi 
linear problems which prove to be useful in understanding and even predicting th 
results of  the non-linear system. Most of  the results in this paper are explicitly o 
implicitly contained in the papers by STOMMEL (1948) and by MUNK, GROVES an, 
CARRIER (1950). Our emphasis is different but then so is our vantage point. 

Part 2 contains numerical integrations of  the finite difference formulation of th 
differential equations. 

2. G O V E R N I N G  E Q U A T I O N S  

In accordance with the remarks in the introduction we shall make sparing bu 
critical use of  the fact that the ocean is a shallow layer of stratified water on the rotat 
ing earth. In transforming the equations of  motion to the g-plane we note that th, 
stratification of the ocean causes the direction of the local normal to take precedenc, 
over the direction given by the axis of  rotation. For a truly homogeneous body o 
water the direction of the axis of rotation would be the critical one*. Because o 
the stratification the locally horizontal component of the Coriolis parameter can bq 
neglected and, if  attention is riveted on a portion of the ocean which is confined t~ 
latitudes which are not too far north, the principal manifestation of the sphericit2 
of the earth is reflected only in the variation of the locally normal component of  th~ 
Coriolis parameter with latitude. In what follows the equations are written in term.. 
of  vertically averaged velocities. 

With these simplifications and approximations the equations of motion for a~ 
ocean basin confined between two level surfaces and subject to a wind-stress at the uppe~ 
surface are given by 

3v 1 r 
3--~ + v .  V v  4 f x v  . . . . .  Vp Kv  • - -  (2.1 

p D 

V. v -- 0 (2.2 

where v = (u, v) is the horizontal velocity vector with u taken positive toward th~ 
east (x) and v taken positive toward the north (y). The vertical component of th~ 
Coriolis parameter, f---- f0 + flY, is the familiar linearized form used on the f-plato 
and reflects the variation with latitude. Here, f0 = 2£2 sin 40 and fl - (2£2/a) cos 4~ 
where f2 is the rate of rotation of the earth in terms of radians per second, a is the 
radius of  the earth, and 40 is the latitude about which spherical surface is transformed 
to the g-plane. 

Frictional dissipation in the present model is confined to simple bottom friction 
with a coefficient, K. It can be derived as an approximate form of the frictional 
process either by treating friction in terms of a simple drag law (in which case /~ 

*Cf. VERONIS (1963a, b) for a detailed discussion of these points. 
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should depend on the velocity) or by means of a bot tom Ekman layer. In our analysis 
K is taken as a constant. The wind-stress, T ---- (Tz, ,u), enters as the surface value 
of the vertical stress term when the equations are integrated in the vertical and the 
depth, D, enters into the denominator because of the vertical averaging. Equation 
(2.2) is the horizontally non-divergent form of the continuity equation. 

Equations (2,1) and (2.2) are the basic equations of  our model. There is no obvious 
way to derive them as a first-order set of  equations for a baroclinic ocean with bot tom 
topography. For this reason it may be preferable to look upon this model as a very 
simple model in which a restricted number of processes act and to study the interaction 
of these processes. In terms of ocean circulation we are as interested in learning about  
the limitations of  the model as we are about the successes. In any event in the sub- 
sequent development we shall refer to the model as a two-dimensional flow of  a 
homogeneous fluid on the/3-plane even though it is in some sense meant to represent 
a vertical average of a three-dimensional inhomogeneous flow. 

Because the flow is two-dimensional we introduce a stream function, ~b, such 
that the velocities are defined as 

b~b b~b (2.3) 
u - -  by ' v --  bx 

and the continuity equation (2.2) is automatically satisfied. The pressure can be 
eliminated from the system by taking the curl of  equations (2.1) and the resulting 
equation for the vertical component  of  vorticity, ~, is 

_ 1 ( 3 , ,  (2.4) b~bt + v. V~ +,Bv:  --K~ +-~ k bx by] 

where ~ = b__vv _ bu is the vorticity. Using (2.3), we can write 
bx 3y 

= v ,  ~ (2.5) 

I f  the curl of  the wind-stress vanishes at the northern and southern boundaries 
of  a region, it has been a customary procedure in the past (and can be justified for the 
linear boundary-layer type of problem) to treat the region as a closed basin, isolated 
from the rest of  the ocean. We proceed with this assumption (and shall justify it) 
for the linear model but shall relax the condition for the non-linear system. For  the 
present it suffices to note that the basin is square in shape with boundaries at x = 0, 
rrL and y = 0, rrL and the boundary condition is consequently 

~b - -0  on x = 0, zrL and y = 0, rrL (2.6) 

Most  of  the detailed calculations presented later have been carried out for a 
steady wind-stress distribution of  the form* 

~ _ W s i n  x y W x y 2 T c ° s - - '  ~ v = ~ c o s z s i n z  (2.7) 

W 
where -~ is the amplitude of each component  of  wind-stress. The curl of  the wind- 

stress [the last term in equation (2.4)] is then 

*N.B. Only the curl of the wind-stress enters into the vorticity equations, and many different 
forms of the wind-stress components could be used to yield the form of curl , given in (2.8). We 
choose the form which has no divergence in order to simplify the discussion of the pressure field. 
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1 t aru ) r ' l _  W sin x y (2.8) 
19 \ ~ x  ~,y ' - D L  k sin -g " 

It is convenient to non-dimensionalize the system so as to introduce a minimum 
number  of  parameters and this is done by taking 

a 1 b a I ) W ~ o 
a~ = /7 a x "  ,~y ..... L ,ay', ~b ::: b/~ ~b', ,~t /gL ~-t ~ . (2.9) 

Then we transform the vorticity equation (2.4) into 

a a4, 
~t + RJ(~b,~.) ~ 3 ~ =  Eg ! cur l ' r  (2.10) 

where the variables in (2.10) are non-dimensionalized according to (2.9) and the 
primes have been dropped. Tl-,e term curl T now contains only the form of  the curl 
of  the wind-stress since the amplitude has been divided out. 

The parameters R and E are defined as 

W K 
R D/32La, • : /aL (2.11) 

and represent respectively the magnitude of  non-linear and frictional processes. 
The boundary conditions are 

~b :: 0 on x : 0 ,  7r and y = : 0 ,  rr. (2.12) 

Hence, equations (2.5), (2.10), (2.11) and 2.12) define the boundary  value problem 
that must be solved. 

Although the stream function, hence the velocities, can be derived from the four 
equations cited it is very enlightening to look at the pressure distribution as well. 
To this end we non-dimensionalize the equations (2.1) using (2.9) and the definition 

W L p  , (2.13) 
p ..... D -  p 

Then in non-dimensional form the components  o f  equations (2.1) become 

3u q R v .  V u  f v  ap r ac - -  , - -  - • u + - -  ( 2 . 1 4 )  
bt ax 2 

av + R v . Vv  + f u  ap rv  . . . . . . . . . .  ev i- - -  (2.15) 
at ay 2 

where a 
f ~ - - t a n q 5  0 + y  ( 2 . 1 6 )  

L 

and where a is the radius of  the earth and q'0 is the latitude about  which the spherical 
surface is t ransformed onto the /3-plane. 

For  numerical calculations we shall use the following values for the dimensional 
parameters " 

-Q = 0.73 × 10 -4 sec -a 
L = 2 × 108 cm 
a = 6 . 4  × 108cm 

~o = 30°" 
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We can then derive 
~- 2 × 10 -xa cm -1 sec -x 

a 
- -  tan 40 ~ 1.85 
L 

The values o f  E and R will be varied over large ranges. 
The linear, steady problem (R ---- 0, b/bt ---- 0) was first solved by STOMMEL (1948). 

It is solved again in the next section with boundary-layer  methods so that boundary-  
layer ideas are brought  out and so that  the pressure distribution for the linear problem 
can be discussed. 

3. L I N E A R  MODEL 

In order to bring out some of  the important  ideas and processes which will be 
useful for an understanding of  the non-linear analysis, we consider here the linearized 
steady system which was originally solved by STOMM~L (1948). 

b 
Let R --~ 0, ~ - -  0 so that  equation (2.10) becomes 

, V 2 ~b + ~bx = curl r = - -  sin x sin y (3.1) 

where subscript x corresponds to - -  b . The boundary  conditions are given by (2.12). 
bx 

J ~.________----~J 

0 0  

O0 X ~  "~ 

FI~. 1. Contour lines of  the normalized stream function, ~b/~bmax, #re shown for values of  
ff/ffrnax ranging from 0 to 1"0 in intervals of  0.2. The graph corresponds to equation (3.2) with 

e = 0"05. The flow is clockwise. 

The formal solution to the problem is easily derived. We note that  ~b ,~ sin y 
satisfies both  the equation and the y boundary  conditions and a one-dimensional 
problem results. The complete solution is 

~ - -  1 2es inx  - t -cosx  + e,~D 1 _e,~D~[(l-t-e'~D2)eD~z--(l÷e"D1)eD~ x] siny (3.2) 

where D I = - - I - -  ~/(1 + 4 e  2) D 2 •  - - 1  + ~/(1 + 4 e  2) 
2e ' 2e 

The solution (Fig. 1) shows a southward drift th roughout  the ocean except for a 
thin boundary  layer along the western coast. The stream function is symmetric in y 
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and the flow is directed eas tward in the nor thern half  and westward in the southe 
half  o f  the basin. Before discussing the solution,  we shall derive it by the approximal  
but  more  instructive, boundary- layer  method.  

(a) Boundary- layer  solution 

In  the non-dimens ional iza t ion  leading to equat ion (2.10) the s tream funct ion w 
scaled so tha t  the fl-term and the driving te rm have coefficients equal  to one. In  tl 

K 
l inear p rob lem (3.1) this means that  only the parameter ,  ~ = ~-{, enters explicit 

and  it multiplies the fr ict ional  term. The length has been scaled with L so that  x and 
each range f rom 0 to ~-. Let  us now assume that  the lengths and ~J have been scal~ 
so tha t  the s t ream funct ion and its derivatives are 0 (1). Then if  E < 1, we negle 
the  fr ic t ional  te rm and an approx imate  form of  (3.1) is* 

v ~: ~hx - -  sin x sin y (3. 
with solut ion 

~b ...... c o s x s i n y  i g(Y) (3. 

There is obviously not  enough arbi t rar iness  in (3.4) to satisfy all o f  the bounda:  
condi t ions.  I f  g (y) oc sin y, we can cause ~b to vanish at y : -  0 and ~r. However ,  
cannot  be made  to vanish at  both x -: 0 and  7r. Hence we must  relax our assumpti(  
that  ~b and all o f  its derivatives are 0 (1) and  thereby allow the fr ict ional  term 
become impor t an t  somewhere,  presumably  near  one of  the boundaries .  

Proceeding with the boundary- l aye r  method,  we now assume that  in some regk 
3 b 

_ _  E r ~  3x ~ .  Then (3.1) becomes 

~1+2n ~beg + ~ ~buu + ~,, 4j e - -  sin x sin y (3. 

I t  is clear tha t  n < 0 otherwise the lef t -hand side is at  most  0 ( 0  and no term c~ 
balance the r ight -hand side. I f  n <,~ 1, the first te rm dominates  the entire equa tk  
and the solut ion does not  have a bounda ry  layer. We choose n such that  the fir 
and  th i rd  terms balance.  This yields n . . . .  1 and (3.5) becomes 

~ e  ~- Ce ~ 0 (~) (3. 
with the  solut ion 

~b h (y)  e- ~ q- k (y)  - h (y)  e z / ,  + k (y)  (3. 

The to ta l  approx ima te  solut ion to the problem consists o f  the sum of  (3.4) and  (3. 
and  is 

~ b - - c o s x s i n y  + h ( y )  e z/,  ~ / ( y )  (3. 

I f  h (y) and  1 (y) are chosen so as to make  ~b ~ 0 on x := 0, ~r, we have 

~b - -  (1 -j cos x .... 2e x/,) sin y (3.' 

The solut ion satisfies the equat ion t o O  (~) and the boundary  condi t ions  to 0 (e -"~' 
It should be noted  that  the exponent ia l  por t ion  of  the solution becomes small fi 

*This approximate solution is the basis for taking the boundaries of the basin as the lines alo~ 
which the curl of the wind-stress vanishes. The meridional velocity is directly related to the ct 
of the wind-stress in this so-called SVERDRtJP (1947) solution. 
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x > ~ so that except for a thin region near x ----- 0 the solution is given by the first 
two terms in the parenthesis of  (3.9) 

The velocity fields are easily derived from the definition (2.3) 

v = ~bx = ( - -  sin x + 2/~ e -xA) sin y (3.10) 

u = --  ~b u = (2e -z/"  - -  1 --  cos x) cosy  (3.11) 

It  is easily seen that with c < 1, equation (3.2) reduces to (3.9) because DI - - -  1]~ 
and D~ ~ E so that e ' °a  < 1 and e ~D2 ~_ 1. 

(b) Interior f low 

Away from the western boundary (x = 0) equation (3.3) is valid. Thus there is a 
southward flow throughout the interior part of  the ocean. The significance of this flow 
is more readily appreciated if we note that it corresponds to a balance between the 
fl-term and the driving term in the vorticity equation. The term, fly, may be written 
as v .  Vf or as df/dt.  Hence, we have the following approximate balance throughout 
the interior : 

d f  curl T (3.12) 
dt D 

In the linear problem the local vorticity of  a particle is small relative to the planetary 
vorticity. Hence, if the wind-stress transmits negative (say) vorticity into the ocean 
at a given rate, a fluid particle will flow towards lower latitudes with a velocity such 
that the rate at which its vorticity becomes smaller (smaller because of the smaller 
value of f at the latitude into which the particles moves) just balances the rate of  
input of  negative vorticity by the wind. The zonal component  of  velocity has no 
effect on the vorticity in this linear frictionless region. However, it must be consistent 
with the driving force and the pressure field and the direction of the interior flow 
determines both the side of  the ocean at which the boundary layer forms and the 
sign of the vorticity in the boundary layer. We postpone the discussion of the zonal 
velocity until we consider the pressure distribution. 

We must keep in mind the fact that the foregoing results apply to the interior region 
of a linear system which has boundary-layer characteristics. Non-linear inertial effects 
can alter this simple picture. 

(c) The boundary layer 

The boundary layer which provides the northward flow in the system is thin. 
I f  we arbitrarily take its characteristic thickness as the length at which the northward 
velocity falls to, say, e -1 of its maximum value at the boundary, we can then state that 
the boundary-layer thickness is ~/zr times the scale of  the basin*. I t  is natural to 
identify the western boundary layer with the Gulf  Stream. We turn to observation 
and find the ratio of  Gulf  Stream thickness to ocean width to be approximately 
0.01. Hence, if our simple linear model is appropriate and if the Gulf  Stream is 
frictionally controlled, then we would have E/Tr _ 0"01. This puts an upper bound 
on ~ (and therefore K) whether non-linear effects enter or not, because a larger value of  

would cause the smallest scale of  motion to be correspondingly larger. 

*N.B. ~ = K/ilL so that the boundary-layer thickness is K/il divided by the width of the ocean. 
The factor, ~r, enters explicitly only because of the way that we have scaled the x co-ordinate. 
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We note also that the boundary-layer thickness as it is defined above can be 
derived without solving the entire problem because it arises by the balance of the 
two terms, ECzx and ¢~, in the boundary layer. It automatically follows that 
3/bx .~.~ 1 and this sets the scale. 

Consider next the vorticity in the boundary layer. Since ~ V2¢ and since 
Cxx ~* Cyy, we have from (3.10) 

( 2 ) 
..... Vx ..... Czx - c o s x  i ~j:;e z/~ s iny (3.13) 

or approximately 
2 

~ -- e -':"~ sin y (3.14) 
~2 

Thus the vorticity is negative and very large in the boundary layer and the largest 
absolute value occurs at mid-latitude. 

We can, therefore, describe the overall balance of vorticity as follows : In the 
interior the wind-stress transmits negative vorticity into the ocean at a certain rate 
and fluid particles flow southward with a velocity which changes their latitude (and 
hence their planetary vorticity) at the same rate. The fluid comes into the thin boun- 
dary layer and a large shear (consequently, a large local vorticity) is generated by the 
crowding together of the streamlines. As the streamlines turn northward, the planetary 
vorticity of the particles is increased at a rate which is balanced by the rate of fric- 
tional dissipation of negative vorticity. The t o t a l  a m o u n t  of vorticity which a particle 
must lose is fixed by the amount of negative vorticity transmitted by the wind-stress 
in the interior. However, the r a t e  at which the vorticity is dissipated is determined 
by the magnitude of the frictional parameter. The vorticity reaches a maximum 
absolute value at mid-latitude because up to mid-latitude additional fluid of negative 
vorticity enters from the interior. North of  the mid-latitude no additional fluid 
enters the boundary layer and, when viscosity has dissipated the vorticity which a 
fluid particle has acquired in the interior, the particle leaves the boundary layer to 
begin the cycle over again. 

It is important to note that the path of a particle is symmetric about the mid- 
latitude, that incoming fluid increases the magnitude of the local vorticity in the 
boundary layer, and that a particle can leave the boundary layer only when it has 
lost the necessary amount of vorticity through dissipation. 

(d) T h e  p r e s s u r e  f i e l d  

From (2.7), (2.14) and (2.15) we see that the appropriate equations of motion for 
the linear steady problem are 

- -  f v  .... p x  - -  Eu - -  ~ sin x cosy  (3.15) 

f u  -:- p y  - -  e v  t_ ~ c o s x s i n y  (3.16) 

Consistent with the boundary-layer argument we can neglect Eu everywhere (even in 
the boundary layer since u does not become large). Then it is a simple matter to in- 
tegrate (3.15) to get 

- J~  .. . . .  p ! ,1, c o s x c o s y  i -g(Y)  (3.17) 

An integration of (3.16) yields 
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- - f ~ b =  - - p  ÷ c o s y + ½ c o s x c o s y q - h ( x )  (3.18) 

where we have used (3.10) for v. Hence, 

p = f ~ b  q-(½ cos x + 1) c o s y  + const (3.19) 

The solution is shown in Fig. 2. We see that the lowest pressures occur in the north- 
western boundary layer and that there is a high pressure region at mid-latitude just out- 
side the boundary layer. In fact, the pressure and stream function fields roughly coincide. 
The flow is, therefore, nearly geostrophic. This is reflected in the relatively smaller 
separation of the isobars in the northern half-basin where the variable Coriolis force 
is larger. 

0 . 2  

~ 0 . 4  

I.O 
© 

0 I_ / 
0 ~ "~ 

Fro. 2. Contour lines of the normalized pressure field, P/Pmax, a r e  shown for values of P/Pmax 
ranging from 0 to 1.0 in intervals of 0-2. The small circle on the western boundary marks the 

point of minimum pressure (p = 0). 

The deviation of the interior flow from geostrophy is easily understood if we 
note that in the interior the equations (3.15) and (3.16) can be written as 

- -  f (ve + Vg) ~ - -  P x  - -  1 sin x cosy  (3.20) 

f ( u e  q- Vg) - -  p y  + ½ COS X sin y (3.21) 

where we have divided the velocity field into two parts, the geostrophic part, vg, 
and the remaining portion, r e .  The geostrophic velocity is balanced by the pressure 
force. The remaining portion is balanced by the driving force and is simply the Ekman 
transport, i.e., the wind-stress gives rise to a transport which is directed to the right 
of  the direction of the wind. Since the wind-stress pattern is clockwise and symmetrical 
about the center, the resulting Ekman transport is everywhere directed roughly 
toward the middle of  the basin. I f  such a symmetric pattern is superimposed on 
the isobar pattern shown in Fig. 2, the net flow must have a component  up thz pressure 
gradient everywhere except in the vicinity of  the high pressure region where the wind- 
stress gives rise to a flow toward lower pressure. 

Within the boundary layer itself frictional processes enter explicitly and the 
balance is somewhat more complicated. However, the general behaviour can be 
described as follows : northward flow is geostrophically balanced by the east-west 
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pressure gradient. Along the boundary the flow is down the pressure gradient up to 
high latitude because the balance is mostly between the frictional and pressure forces. 
In the northernmost regions along the western boundary the pressure begins to 
build up since the northern boundary is a barrier and the flow there is up the pressure 
gradient. Away from the immediate vicinity of the boundary the flow in the western 
boundary layer has a component up the pressure gradient. 

We see, therefore, that throughout the ocean basin the flow is primarily geostrophic 
with some cross-isobar flow generated by the wind-stress in the interior (Ekman 
transport) and by frictional forces in the boundary layer. The northward flow in the 
western boundary layer is very strongly geostrophic. 

4. P E R T U R B A T I O N  T R E A  F M E N T  OF I N E R T I A L  E [ ' F E C T S  

We now consider the effects of the non-linear terms on the linear flow described 
in the pervious section. To do this analytically we must use perturbation analysis, 
i.e., we can treat only the case where the non-linear effects are in some sense small. 
Since we shall present non-linear solutions of all orders in Part II, we confine our 
attention here to qualitative effects of non-linearity and postpone the detailed results 
to Part [l. 

The dominant non-linear effects will occur in the western boundary layer in the 
same manner as the dominant frictional effects. Thus, if the amplitude of the stream 
function is 0 (1), non-linear behaviour can be expected to manifest itself principally 
in those regions where the derivatives of the stream function become large. 

Let us write 
,,/, (u  ~ 4/, ~ ~.r ~ ~' (4.1) 

where ~I and ~ correspond to the linear, frictional solution of (2.10) and ~,' and ~' 
are perturbations. We substitute (4.1) into (2.10) (with ~/~t _----_ O) and find for the 
lowest order system 

E~' ~ ~bx': ..... RJ(@, ~j)=: R d~" (4.2) 
dt 

d ~y from the linear solution and applying boundary-layer By substituting for dt- 

stretching for x, we have the system 

2R 
~e~' ~ 4J~ ' ~- 7 e  es in2y  (4.3) 

where we have kept only the dominant term on the right-hand side. The boundary- 
layer solution of (4.3) is (to lowest order in E) 

~b' _~ 2(R. e-e sin 2)' (4.4) 
62 

and, if we now write down the total boundary-layer solution up to first order in R, 
we have 

2R 
4~-~ 2(1 e-~)siny----v~e ~sin2y (4.5.) 
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2 e . 2R (~: -- 1) v ~- -- e-  s m y  + e-~ sin 2y (4.6) 
E e3 

2 2R (~ -- 2) e-e sin 2y (4.7) ~ - - ~ e - e s i n y +  c4 

From this perturbation solution we see that the transport, ~b, in the boundary 
layer is decreased in the southern half-basin and increased in the northern half-basin 
by the perturbation correction. The net result therefore is to shift the point of 
maximum transport northward. 

Furthermore, in the southern half-basin the northward velocity is decreased for 
< 1 and is increased for ~ > 1 by the perturbation solution. The amplitude of 

vorticity, I 1, is descreased for ~ < 2 and is increased for ~: > 2. Thus in the southern 
half-basin inertial effects tend to increase the width of the boundary layer and simul- 
taneously to make it smoother by cutting down the large amplitudes of the northward 
velocity and vorticity. 

In the northern half-basin v is increased for ~ < 1 and decreased for ~ > 1 and Icl 
is increased for ~: < 2 and decreased for ~ > 2. Both v and ~ can change sign near 
the outer regions of the boundary layer. This fact reflects the effect of inertial processes 
which can cause a particle to overshoot its equilibrium position. When that happens 
the particle will return to the equilibrium position by reversing its direction of flow 
and the sign of its vorticity. Thus a countercurrent is generated on the offshore side 
of  the boundary current. 

It is important to note that in the northern half-basin inertial effects tend to 
concentrate the intense northward flow and thereby intensify the boundary-layer 
structure. Near the outer regions of the boundary layer the flow turns southward. 
Therefore a double boundary layer begins to develop in the north as a result of 
inertial effects. 

These results shown that non-linearity provides a north-south asymmetry in the 
transport function and in the structure of the boundary layer. Because the north- 
ward transport in this region is highly geostrophic (it continues to be so for the 
non-linear solutions) a decrease in the mass transport in the south must be accom- 
panied by a decrease in the east-west pressure gradient, and an increase of mass 
transport in the north must be associated with an increase in ~p/~x. Thus there is a 
redistribution of fluid such that the high pressure region is located farther to the 
north and west when the flow is non-linear. This shift of the high pressure region 
serves several purposes. In addition to providing for the local increase in the north- 
ward transport, it makes it more difficult for the fluid to leave the boundary layer 
since the fluid must now flow toward the east into a region of higher pressure. Hence, 
there is a tendency for the outgoing fluid to concentrate toward the north. This path 
is made easier because as the high pressure region moves northward the magnitude 
of bp/by in the northernmost regions is also increased and the resulting eastward 
geostrophic flow is larger. Hence, inertial effects tend to create a boundary layer on 
the northern boundary. This is consistent with FOFONOFF'S (1954) results for a free, 
inertially-controlled flow. 

We note further that, since both the transport, v, and the magnitude, I~[, of the vor- 
ticity are smaller in incoming regions and larger in outgoing regions than the correspond- 
ing quantities for the linear problem, the points of maximum v and [~l must be shifted 
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to the north. Thus, there is a tendency for the region of incoming flow to be extended 
northward past mid-latitude. Without a higher-order calculation we cannot tell 
whether the total amount of transport is larger or smaller than in the linear problem. 
And finally, since the frictional force is proportional to amplitude, it is clear that the 
dissipation will be increased in the northern regions and decreased in the southern 
regions by inertial effects. 

The foregoing results tell us much about what can be expected in the non-linear 
problem. They are especially useful in indicating the types of response which occur 
in the western boundary layer and in pointing out the relative roles of non-linearity 
and friction. 

Suppose that we had taken a different tack by treating the problem as one in 
which the boundary layers were controlled principally by inertial terms. In this 
case the fl-term in equation (2.10) would be balanced by the non-linear terms so that 
we would have a balance of the type 

R (,. ~b.. u ---. (,. (4.8) 

If we again assume that the principal variation is introduced by x-derivatives, it is 
necessary that 

.... ,-- R ~ (4.9) 
Ox 

Then we can talk of an inertial boundary-layer thickness whose scale is V(R)/rr of 
that of the basin. 

The difficulty with this approach is that friction cannot be introduced as a pertur- 
bation because all of the streamlines must pass through a frictional region in order 
to dissipate the vorticity which has been accumulated in the interior through the action 
of the wind-stress. Hence, in at least some region of the basin, the frictional processes 
must be at least as important as the non-linear processes and in that region a per- 
turbation approach breaks down. On the other hand, when inertial effects are treated 
by a perturbation approach, the distortion of the linear flow can be determined to any 
desired accuracy provided that R is sufficiently small. Hence, if the magnitudes, 
,~/R and E, are used as some kind of measure of the relative roles of non-linearity and 
friction, it should be possible to treat the problem by perturbation methods as long 
as v R  <~ E. 

Even in the strongly non-linear problem, i.e., when v"R ,~, E, it may be possible to 
analyze some regions by means of an inertial boundary-layer treatment. The results 
in this section show that inertial effects tend to broaden the frictional boundary 
layer in the south and cause it to become narrower in the north. Hence, when 
x/R > E, the region of maximum dissipation is probably in the north and the region 
of incoming flow may be amenable to analysis based on an inertial boundary layer. 
For a meaningful analysis it is necessary to know the extent of the region of incoming 
flow but that is not possible without explicit consideration of the northern region 
where friction is important and where the fluid leaves the boundary layer. Indeed, 
that one can speak of a boundary layer in the north in the same sense that one uses 
the term for regions of incoming flow is very doubtful. 

We note, also, that a necessary condition for the validity of the perturbation 
solution (4.5) is that R/d < 1. If we recall the derivation of frictional and inertial 
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boundary layers, we see that the criterion means that the perturbation approach is 
valid provided that the inertial boundary-layer thickness is somewhat less than the 
thickness of the frictional boundary layer. We shall refer to this point again in Part 2. 

Finally, we note some of the results of this section which are pertinent to the 
question of separation of the western boundary layer from the coast, a point which 
has been discussed a great deal in the past ten years by various authors. The presence 
of a high pressure region just outside the boundary layer when the system is linear 
must inhibit the flow from separating at mid-latitude. In fact, as we have noted earlier, 
this high pressure ensures that there will be a strong northward flow at that latitude 
because the flow is geostrophically balanced. 

Inertial effects tend to shift the high pressure region northwestward so that the 
northward flow is intensified in that region and, if the tendency is continued for larger 
values of R, an eastward jet, balanced by a strong north-south pressure gradient, 
will form at the northern boundary. The indications from the present argument are 
that separation of the western boundary layer cannot occur at mid-latitude or indeed 
at any latitude other than along the northern boundary. Hence, non-linearity cannot 
cause separation in the barotropic system (when the depth is constant). If  the fluid 
is stratified, the picture may be completely different, especially if there is not enough 
lighter, surface water to allow the geostrophically balanced jet to continue northward. 
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